重组药物的迅速发展有着必然性,但要持续发展,有几个问题必须解决或优化,包括生产载体与产量、基因工程改造和翻译后修饰以及用药途径。
1、生产载体与产量
生产能力不足已经成为重组药物发展的瓶颈。以Enbrel为例,在1998年上市6个月内仅美国销售就超过对全球整年需求的预计[27],生产规模缺口很大。又如,HIV蛋白微球(microbicides)在局部使用可以防止HIV传播,但至今未进入临床研究,原因也是生产量不够 [28]。还有很多药物不仅发展中国家用不上,即便是发达国家也难以使用,估计有80%的血友病患者无药可用,主要是生产能力不足。生产能力不足也导致其价格不菲。
哺乳动物细胞和大肠杆菌(E.coli)是上市重组药物最主要的生产载体(见图4)。E.coli用于表达不需要翻译后修饰的重组药物,如胰岛素、生长激素、β干扰素和白细胞介素等。糖蛋白重组药物除刚批准上市的ATryn以外,全部在哺乳动物细胞中表达。Activase是第一个由哺乳动物细胞表达的上市重组药物,Epogen是第一个由哺乳动物细胞表达的“重磅炸弹”药。CHO细胞是最为常用的生产载体之一,其糖基化最近似人的糖基化结构,但糖基化产物是不均一的混合物。BHK细胞是第二常用的,另外,NSO、HEK-293和人视网膜细胞表达的蛋白也获得过批准。目前,哺乳动物细胞的产量亟待提高。上个世纪80年代,培养细胞密度最大达到2X106/ml,生产期7天,特异产物量为50mg/L。2004年的数据显示,细胞密度最大可达到 10X106/ml,有效表达时间达到3周,表达量接近5g/L,是1980s的100倍[29],现在世界上最大的细胞发酵罐达到2万升。哺乳动物细胞生产体系还需要解决的其他问题包括无血清培养基、延迟细胞凋亡和糖基化改进等[30]。酵母细胞虽然能够糖基化,但是与人的糖基化有很大差别,为高度木糖醇型,表达的重组药物在体内半衰期很短并有潜在的免疫反应。因此,该领域最可能取得的突破是“人源化”P.pastoris酵母[31],能生产均一、与人糖基化相同的糖蛋白,靶蛋白的产量可达到15g/L,是哺乳细胞的3倍,对哺乳动物细胞表达体系形成有力挑战。
另一个正在取得突破的是植物表达体系(molecular farming),植物糖基化免疫原性低,不易诱发过敏,但有可能改变一些糖蛋白的功能。目前已用于10多个重组药物候选者的表达,其中1个已进入II期临床[28]。该体系尚需解决的问题有,进一步提高表达产量、通过“人源化”改造糖基化结构以及评价生产体系对环境的影响。已经有了突破的转基因动物生产方式至少在近期不会成为主流,其问题在于转基因高等哺乳动物乳液蛋白糖基化仍有别于人,可能导致抗原性的变化。欧盟人用医学制品委员会(CHMP)曾对 ATryn上市提出过反对意见,理由是临床例数太少。另外,美国Genzyme公司重组人酸性α-葡萄糖酶(商品名Myozyme),原本在转基因兔奶中生产,最终换为CHO细胞生产并获得FDA批准上市[20]。转基因鸡的蛋青也可高水平表达重组药物,但目前尚无任何一个转基因鸡制备的药物被批准,主要问题仍是糖基化问题。当然,如果药物是口服和局部使用,抗原性问题将可能被忽视。
2、重组药物的基因工程改造和翻译后修饰
高度纯化的重组蛋白与人内源蛋白相同或高度相似,能避免出现免疫反应。但有30%左右重组药物是经过基因工程改变或经过其他手段进行翻译后修饰的(图 5),也有文献指出现有上市重组蛋白药物种基因改造率达38%。改变蛋白的结构的目的是为了优化其药代动力学,但又不能弱化其生物功能及产生新的抗原性。
以重组人胰岛素为例,有多种基因工程改变序列的产品,主要是B28、B29和B30位的氨基酸改变。第一个经基因工程改变的重组人胰岛素为Lispro,是B28、B29之间的颠换,使产生双聚体和多聚体的可能性比野生型降低300倍[32],可以更快地释放入机体,起到速效的作用。缺失突变体也比较常见,ReFacto(重组凝血因子VIII,2005年销售额2.5亿美元)就是缺失突变体[33],对体内出现因子VIII抑制物的血友病患者有较好疗效。最近研究表明,Ankyrin重复(出现在erythrocytes等中,由33个氨基酸组成,有β折角反向平行和α螺旋)有助于加强重组药物靶标识别、膜蛋白的朝向性和稳定性[34]。但是,基因工程改变序列应非常谨慎,一些很小的变化就可能导致蛋白构象较大变化,从而诱发免疫反应。翻译后修饰主要包括脂化和PEG化。脂化是指将脂肪酸共价定点连接在蛋白上,从而增加药物与血清白蛋白的亲和力,延长在血清中的循环时间,发挥长效作用。PEG化分为单一PEG化和多点PEG化,通过降低血浆清除率、降低降解和受体介导的摄入,也能达到长效的目的,同时屏蔽抗原表位提高药物的安全性。PEG-干扰素 α(Pegasys和PEG-Intron)和PEG-GCSF都是PEG化成功例子[35]。融合蛋白是指不同蛋白的不同功能域通过基因工程手段构建成一个蛋白,希望具有双功能或新的功能。虽然在这方面进行了大量的尝试,但是,25年来仅有3个被批准,提示其难度之大。外源蛋白更是只有1个成功例子。
3、给药途径的变革
绝大多数重组药物是注射给药或静脉途径,仅有2个是喷雾剂,如Pulmozyme即是一种液体喷雾剂。有些疾病如糖尿病、肾衰性贫血等都需要长期使用药物,注射或静脉途径的方式非常不便利,从而人们在给药途径上进行了大量的尝试。2006年,终于有了重大突破,Pfizre和Avents的肺吸入型胰岛素Exubera获得批准在美国和欧洲上市。作为干粉,肺吸入性剂型比液体喷雾剂稳定,剂量也好掌握。当然,Exubera 价格昂贵,以至英国有关部门拒绝使用,因为每周每个病人为此要多付出18美元。无论怎样,这将改变众多糖尿病患者的治疗方式,减除他们的痛苦,也激发了其它药物替代注射途径的研究热潮。我国有几家科研机构和公司研究透皮给药和肺吸入给药方式已经取得了可喜的进展。但是,应该指出,肺吸入型胰岛素在1999 年就已经进入III期临床研究[36],至今才获得批准,难度可想而知。在这方面,最大的技术难点是给药剂量的精确度和药物稳定性等。